Data Representation

SARCAR Sayan
 Faculty of Library, Information, and Media Science

Contents

－What do we mean by data？
－How can data be represented electronically？
－What number systems are often used and why？
－How do number systems of different bases work？
－How do you convert a number between binary and decimal？

Data

－Many definitions are possible depending on context
－We will say that：
－data is a physical representation of information
－Data can be stored
－e．g．：computer disk，cash till
－Data can be transmitted
－e．g．：fax
－Data can be processed
－e．g．：cash till

Electronic representation of data

－Information can be very complicated
－e．g．：
Numbers Sounds
Pictures Codes
－We need a simple electronic representation
－What can we do with electronics？
－Set up voltages and currents
－Change the voltages and currents
－A useful device is a switch
－Switch Closed：V＝ 0 Volts
－Switch Open：V＝ 5 Volts

Representation of data

Information can be represented by a voltage level
－The simplest information is TRUE／FALSE
－This can be represented by two voltage levels：
－ 5 Volts for TRUE
－ 0 Volts for FALSE
－A voltage signal which has only two possibilities is a BIT －Bit stands for Binary Digit
－Binary means：only 2 possible values
－False（0）True（1）
－Advantages of using binary representation
－simple to implement in electronic hardware（switsh）
－good tolerance to noise

Number system overview

Decimal numbers

The decimal number system has ten digits： $0,1,2,3,4,5$ ， $6,7,8$ ，and 9

The decimal numbering system has a base of 10 with each position weighted by a factor of 10 ：

Binary numbers

－The binary number system has two digits： 0 and 1
－The binary numbering system has a base of 2 with each position weighted by a factor of 2 ：

POSITIVE POWERS OF TWO （WHOLE NUMBERS）									NEGATIVE POWERS OF TWO （FRACTIONAL NUMBER）					
2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	$2{ }^{1}$	2^{0}	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}
256	128	64	32	16	8	4	2	1	1／2	1／4	1／8	1／16	1／32	1／64
									0.5	0.25	0.125	0.0625	0.03125	0.015625

Binary number system

Uses 2 symbols by our previous rule － 0 and 1

Example： 10011 in binary is $1 \times 2+1 \times 2+1 \times 2=19$

2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
1	0	0	1	1

Binary is the base 2 number system
－Most common in digital electronics

Integer and Fractional parts

－Binary numbers can contain fractional parts as well as integer parts

－This 8－bit number is in Q3 format
-3 bits after the binary point
－How could 19.376 best be represented using an 8 －bit binary number？
－Quantization error

Conversion－Decimal to Binary（1）

The decimal number is simply expressed as a sum of powers of 2 ，and then 1 s and 0 s are written in the appropriate bit positions．

$$
\begin{aligned}
50_{10} & =32+18 \\
& =32+16+2 \\
& =1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{1} \\
50_{10} & =110010_{2}
\end{aligned}
$$

Conversion－Decimal to Binary（2）

$\left.\begin{array}{ll}\text { Repeated division } \\ & \\ 50 / 2= & 25 \\ 25 / 2= & 12\end{array}\right)$

筑波大学
University of Tsukuba

Conversion：Binary tp Decimal

－The simplest way is to represent the binary number as

$$
a_{n} \times 2^{n-1}+\ldots+a_{2} \times 2^{2}+a_{1} \times 2^{1}+a_{0} \times 2^{0}
$$

－The conversion can be done by substituting the a＇s with the given bits then multiplying and adding：
－eg：Convert（1101）into decimal
$-1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=(13)_{10}$
－Other algorithms can be used as alternatives if you prefer

Binary addition

－First recall decimal addition

	1	1	1	
A	1	2	3	4
+B		9	8	7
Sum	2	2	2	1

－In binary addition we follow the same pattern but
$-0+0=0$ carry－out 0
$-0+1=1$ carry－out 0
$-1+0=1$ carry－out 0
$-1+1=0$ carry－out 1
－ $1+1+$ carry－in＝ 1 carry－out 1

0	1	1	1
0	1	1	0
1	1	0	1

Information Interaction Caveats

－Note that we need to consider 3 inputs per bit of binary number
－A，B and carry－in
－Each bit of binary addition generates 2 outputs
－sum and carry－out

Hexadecimal numbers

－Decimal，binary，and hexadecimal numbers

DECIMAL	BINARY	HEXADECIMAL
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Hexadecimal numbers conversions

Binary－to－hexadecimal conversion
1．Break the binary number into 4－bit groups
2．Replace each group with the hexadecimal equivalent
Hexadecimal－to－decimal conversion
1．Convert the hexadecimal to groups of 4－bit binary
2．Convert the binary to decimal
Decimal－to－hexadecimal conversion
－Repeated division by 16

Binary coded decimal（BCD）

－Use 4－bit binary to represent one decimal digit
－Easy conversion
－Wasting bits（4－bits can represent 16 different values，but only 10 values are used）
－Used extensively in financial applications

```
DECIMAL DIGIT
BCD
0000
```


Binary coded decimal（BCD）

－Convert 0110100000111001（BCD）to its decimal equivalent．

```
0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 1
6 8 3 9
```

－Convert the BCD number 011111000001 to its decimal equivalent．
011111000001

The forbidden code group indicated an error

Putting it together

Decimal	Binary	Octal	Hexadecimal	BCD
0	0	0	0	0000
1	1	1	1	0001
2	10	2	2	0010
3	11	3	3	0011
4	100	4	4	0100
5	101	5	5	0101
6	110	6	6	0110
7	111	7	7	0111
8	1000	10	8	1000
9	1001	11	9	1001
10	1010	12	A	00010000
11	1011	13	B	00010001
12	1100	14	C	00010010
13	1101	15	D	00010011
14	1110	16	E	00010100
15	1111	17	F	00010101

University of Tisukuba

Gray codes

- Only 1 bit changes in the count sequence
- Useful for industrial control

Gray codes

－Binary code results in glitches
－Gray code avoids glitches

ASCII code

Codes representing letters of the alphabet, punctuation marks, and other special characters as well as numbers are called alphanumeric codes.

- The most widely used alphanumeric code is the American Standard Code for Information Interchange (ASCII).
The ASCII (pronounced "askee") code is a seven-bit code.

Character	Seven-Bit ASCII	Octal	Hex	Character	Seven-Bit ASCII	Octal	Hex
A	1000001	101	41	Y	1011001	131	59
B	1000010	102	42	z	1011010	132	5 A
C	1000011	103	43	0	0110000	060	30
D	1000100	104	44	1	0110001	061	31
E	1000101	105	45	2	0110010	062	32
F	1000110	106	46	3	0110011	063	33
G	1000111	107	47	4	0110100	064	34
H	1001000	110	48	5	0110101	065	35
I	1001001	111	49	6	0110110	066	36
J	1001010	112	4 A	7	0110111	067	37
K	1001011	113	4 B	8	0111000	070	38
L	1001100	114	4 C	9	0111001	071	39
M	1001101	115	4 D	blank	0100000	040	20
N	1001110	116	4 E	-	0101110	056	2E
\bigcirc	1001111	117	4 F	(0101000	050	28
P	1010000	120	50	+	0101011	053	2B
Q	1010001	121	51	\$	0100100	044	24
R	1010010	122	52	-	0101010	052	2A
S	1010011	123	53)	0101001	051	29
T	1010100	124	54	-	0101101	055	2D
U	1010101	125	55	1	0101111	057	2 F
V	1010110	126	56	,	0101100	054	2 C
W	1010111	127	57	$=$	0111101	075	3 D
X	1011000	130	58	(RETURN)	0001101	015	OD
				(LINEFEED)	0001010	012	0A

Questions to ponder

－How many different symbols can be represented with 4 bits？
－In a data transmission system the set of possible symbols is：\｛lower－case alphabet\} \cup \｛upper－case alphabet\} U \｛space，comma，full－stop\} where 'U' denotes the 'union' of two sets．How many bits of information are needed for each symbol？
－In the above data transmission system the maximum transmission rate is 9600 bits per second．How long，in seconds，would it take to transmit the message：

Home assignment

－Convert the following decimal numbers into binary．Do not use a calculator．
a） 5
b） 99
c） 1024
－Convert the following binary numbers into decimal．Do not use a calculator．a） 1010 b） 10000000 c） 11111111
－Convert the following decimal numbers into hexadecimal． Do not use a calculator．a） 64 b） 98
－Convert the following hex numbers into binary directly without first converting them to decimal．Do not use a calculator．a）F8 b） 144
－Perform the following binary arithmetic：a） 00110111 ＋ 00110010 b） $1100+0100$ c） $00110100-00001010 \mathrm{~d})$ 0010－0111

Q \& A

Please write any feedback regarding class to
sayans@slis.tsukuba.ac.jp Sub: Informatics class feedback

University of Tsukuba

